Studies on Lactams. Part 45. ${ }^{1}$ Some Carbocyclic Analogues of Cephalosporin ${ }^{1}$

By Ajay K. Bose, Shantilal G. Amin, Jagdish C. Kapur, and Maghar S. Manhas,* Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.

Abstract

Several polycyclic β-lactams have been synthesized by the reactions of cyclic imines with acid chlorides in the presence of triethylamine. The azido-functions in these β-lactams were reduced to amino-groups, which were then acylated with phenylacetyl chloride to introduce the penicillin G side chain. Some carbocyclic analogues of cephalosporin were found to possess antibacterial activity.

During studies on monocyclic β-lactams it was discovered that some compounds of this type showed antibacterial activity. ${ }^{2}$ No structure-activity relationship was obvious on the basis of the available data. However, not all the structural features considered essential for antibiotic activity ${ }^{3}$ in penicillins (la) and cephalosporins (lb) were present in these monocyclic analogues. We therefore proceeded to investigate some other β-lactam structures that were not closely analogous to penicillins and cephalosporins.

For mechanistic purposes an S atom is often considered to be the equivalent of a $\mathrm{C}=\mathrm{C}$ bond. On this

[^0]basis the synthesis of polycyclic β-lactams derived from the ring system (2) was undertaken for studies of antibacterial activity.

Annelation of imines with acid chlorides and triethylamine ${ }^{4}$ was the method employed. The imines (3)(9) were prepared by Bischler-Napieralski cyclization of the corresponding amides (obtained from acylation of phenethylamine or homoveratrylamine with an appropriate acid chloride). During cyclization of N-phen-ethyl- p-cyanobenzamide with phosphoryl chloridephosphorus pentaoxide it was observed that if the reactants were cooled before work-up the cyano-imine (3) was formed. However, if the reactants were decomposed without cooling the cyano-group was hydrolysed and only the carboxy-imine (4) was isolated. The reaction of the cyclic imine (3) with methoxyacetyl chloride in the presence of triethylamine resulted in the β-lactam (10). Under similar conditions with appropriate acid chlorides the β-lactams (10)-(14) and (23)(28) were obtained in ca. $60-70 \%$ yield.
β-Lactams substituted by a free carboxy-group can be synthesized conveniently by the acid chloride-imine method if a silyl ester is used as intermediate. In order to prepare the carboxy- β-lactam (15), the carboxyfunction of the imine (4) was first converted into the
${ }^{3}$ (a) M. S. Manhas and A. K. Bose, 'Synthesis of Penicillin, Cephalosporin C, and Analogs,' Dekker, New York, 1969; (b) M. S. Manhas and A. K. Bose, ' beta-Lactams, Natural and Synthetic,' Part I, Wiley-Interscience, New York, ch, 2; (c) 'Cephalosporin and Penicillin, Chemistry and Biology,' ed. E. H. Flynn, Academic Press, New York, 1972.

4 (a) J. C. Sheehan and J. J. Ryan, J. Amer. Chem. Soc., 1951, 73, 1204; (b) A. K. Bose, B. Anjaneyulu, S. K. Bhattacharya, and M. S. Manhas, Tetrahedron, 1967, 23, 4769.
silyl ester in situ with trimethylsilyl chloride and triethylamine in benzene solution at room temperature. The silylated imine was treated with methoxyacetyl chloride and an equivalent quantity of triethylamine, and the resulting silylated β-lactam ${ }^{5}$ on treatment with methanol afforded the carboxy- β-lactam (15).

The azido- β-lactams (12)-(14) and (26)-(28) were catalytically ($10 \% \mathrm{Pd}-\mathrm{C}$) reduced to the corresponding amino- β-lactams (17)-(19) and (29)-(31). Similarly, the nitro-group in the β-lactam (11) was also reduced catalytically to yield the β-lactam (16). The penicillin G side chain could be incorporated easily by acylating these amino- β-lactams. Thus treatment of compounds (17)-(19), (29), and (31) with phenylacetyl chloride

	R^{1}	R^{2}	R^{3}
(3)	CN	H	H
(4)	$\mathrm{CO}_{2} \mathrm{H}$	H	H
(5)	Me	H	H
(6)	OMe	H	H
(7)	NO_{2}	H	H
(8)	CN	OMe	OMe
(9a)	Br	OMe	OMe
(9b)	OMe	OMe	OMe

gave the amido- β-lactams (20)-(22), (32), and (33), respectively.

In order to introduce the carboxy-function into the carbocyclic β-lactams, to obtain structures of type (2), the synthesis of the imine (37) was undertaken. The readily available starting material, N - $[\alpha$-carboxy- $\beta-(4-$ hydroxy-3-methoxyphenyl)ethyl]benzamide (34), was refluxed with dimethyl sulphate (2 mol . equiv.) in dry benzene in the presence of anhydrous potassium carbonate to obtain the corresponding dimethoxy-ester (36) in 80% yield. Alternatively, methylation of (34) with diazomethane gave the hydroxy-ester (35) which could be converted into (36) with dimethyl sulphate. The amido-ester (36) was cyclized to the imine (37) with phosphorus pentaoxide and phosphoryl chloride. However when the benzyloxy-benzyl ester (42) was treated similarly no cyclization to the imine (43) took place.

The reaction of phenoxyacetyl chloride with the imine (37) and triethylamine in dichloromethane gave the β-lactam (38) as a single isomer. Similarly azidoacetyl chloride and (37) produced the azido-derivative (39), which was catalytically reduced to the α-amino-β-lactam (40). Acylation of (40) with phenylacetyl chloride in the presence of triethylamine produced the

[^1]amido-compound (41). Attempts to hydrolyse the methyl ester (38) to the corresponding free acid β-lactam

by treatment with lithium iodide-pyridine ${ }^{6}$ or lithium iodide-dimethylformamide-sodium acetate ${ }^{7}$ were unsuccessful.

(38) $\mathrm{R}=\mathrm{OPh}$
(39) $R=N_{3}$
(40) $R=\mathrm{NH}_{2}$
(41) $\mathrm{RaNH} \cdot \mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{Ph}$

The reactions of acid chlorides with the imines could theoretically give two β-lactams with cis- and transconfigurations. In all these reactions only a single isomer was formed, as revealed by t.l.c. of the crude
${ }^{6}$ F. Elsinger, Org. Synth., 1965, 45, 7.
${ }^{7}$ J. E. McMurray and G. B. Wong, Synth. Comm., 1972, 2, 389.
product or spectroscopic analysis. On the basis of the available spectroscopic data it is not feasible to assign relative stereochemistry to the substituents at C-6 and C-7.

The β-lactams described here were extensively screened for antibacterial activity against a variety of gram-positive and gram-negative bacteria. Most did not show appreciable activity. ${ }^{8}$ However, a few were active at a dose level of $50-100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ (see Table 1).

Table 1
Antibacterial activity of β-lactams *

Compd.

(16) Diplococcus pneumoniae L54

Pasteuvella multocida A273
(38) Brucella melitensis A 1030 (gram neg.)

Klebsiella pneumoniae A 809 (gram neg.) Shigella equirulis T3 (gram neg.)
(39) Brucella melitensis A488 (gram neg.) Shigella equirulis T3 (gram neg.)

MIC*
($\mu \mathrm{g} \mathrm{mol}^{-1}$) 100 100 100 50 50 50
50
50 50

* A stock solution of the test compounds at a concentration of $2000 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ in 0.05 M -phosphate buffer at pH 6.5 was prepared and two-fold dilutions were made with sterile buffer. Quantities (1 ml) of each dilution were then incorporated into brain heat infusion agar (19 ml) in sterile petri dishes. The hardened surface was then incubated for 18 h at $37^{\circ} \mathrm{C}$. The minimum inhibitory concentration (MIC) was determined.

Unfortunately, the corresponding free carboxy-compounds were not available. Conversion of the azidogroup in (39) to an amino- (40) or amido- (41) function eliminates all activity. A recently described ${ }^{9}$ carbo-
N.m.r. spectra were recorded with a Varian A-60A spectrometer operating at 60 MHz with tetramethylsilane as internal standard. Mass spectra were obtained with a Perkin-Elmer RMU-7 spectrometer. Elemental analyses were performed by A. Bernhardt, Max-Planck Institute, Mülheim, West Germany, and Central Drugs Research Institute, Lucknow, India.

Azidoacetyl chloride was prepared by the method of Bertho and Maier. ${ }^{10}$ Phenoxyacetyl chloride and methoxyacetyl chloride were procured from Aldrich Chemical Co.
$\mathrm{N}-[\alpha-$ Methoxycarbonyl- $\beta-(4-$ hydroxy-3-methoxyphenyl $)$ -
ethyl]benzamide (35).一 N-[α-Carboxy- β-(4-hydroxy- 3 -methoxyphenyl) ethyl]benzamide (34) ($10 \mathrm{~g}, 0.031 \mathrm{~mol}$) was added to a solution of diazomethane in dry ether and left overnight. Removal of the solvent under reduced pressure gave the ester (35) ($8.4 \mathrm{~g}, 80 \%$), m.p. $132-133^{\circ}$ (from benzene), $\nu_{\max }$ (Nujol) $3430(\mathrm{OH}), 3300(\mathrm{NH}), 1730$ (ester CO), and $1650 \mathrm{~cm}^{-1}$ (amide CO); $\delta\left(\mathrm{CDCl}_{3}\right) 3.2(2 \mathrm{H}, \mathrm{d})$, $3.76(6 \mathrm{H}, \mathrm{s}), 5.03(1 \mathrm{H}, \mathrm{m})$, and $6.5-7.83(9 \mathrm{H}, \mathrm{m}) ; M^{+} 329$ (Found: C, 65.7; H, 5.65; N, 3.9. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C , 65.6 ; H, 5.8; N, 4.2\%).
$\mathrm{N}-[\beta-(3,4-$ Dimethoxyphenyl $)-\alpha$-methoxycarbonylethyl $]$ benzamide (36).-(a) A mixture of the hydroxy-acid (34) (10 g, 0.031 mol), anhydrous potassium carbonate ($20 \mathrm{~g}, 0.155$ mol), and dimethyl sulphate ($8.0 \mathrm{~g}, 0.064 \mathrm{~mol}$) in dry benzene was refluxed for 3 h , then filtered. The residue was washed with benzene and the combined benzene extracts were concentrated under vacuum to provide the dimethoxyester (36) ($10.0 \mathrm{~g}, 91 \%$), m.p. $98-100^{\circ}$ (from hexanemethylene chloride); $\nu_{\max }$ (Nujol) 3300 (NH), 1740 (ester CO), and $1640 \mathrm{~cm}^{-1}$ (amide CO); $\delta\left(\mathrm{CDCl}_{3}\right) 3.11(2 \mathrm{H}, \mathrm{d})$,

Table 2

3,4-Dihydroisoquinolines

Compd.	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Spectral data
(3)	146-147	55	$\nu_{\max .} 2205$ and $1600 \mathrm{~cm}^{-1}$; $\delta 2.6-2.95(2 \mathrm{H}, \mathrm{m}), 3.8-4.0(2 \mathrm{H}, \mathrm{m}), 7.0-7.35(4 \mathrm{H}, \mathrm{m})$, and 7.6 ($4 \mathrm{H}, \mathrm{s}$) ; $M^{+} 232$
(4)	233-235	45	$\nu_{\text {max. }} 3350,1720$, and $1610 \mathrm{~cm}^{-1}$; $\delta 2.7-3.0(2 \mathrm{H}, \mathrm{m}) 3.4-,3.7(2 \mathrm{H}, \mathrm{m}), 7.2(4 \mathrm{H}, \mathrm{s})$, and $7.7-7.95(4 \mathrm{H}, \mathrm{m}) ; M^{+} 251$
(5)	75-76	65	$\nu_{\text {max. }} 1605 \mathrm{~cm}^{-1} ; \delta 2.35(3 \mathrm{H}, \mathrm{s}), 2.42-2.75(2 \mathrm{H}, \mathrm{m}), 3.5-3.8(2 \mathrm{H}, \mathrm{m}), 7.5(4 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $7.1-7.35(4 \mathrm{H}, \mathrm{m}) ; M^{+} 235$
(6)	94-95	70	$\nu_{\text {max. }} 1610 \mathrm{~cm}^{-1} ; \delta 2.65-2.9(2 \mathrm{H}, \mathrm{m}), 2.75-4.0(5 \mathrm{H}, \mathrm{m})$, and $6.85-7.8(8 \mathrm{H}, \mathrm{m}) ; M^{+} 237$
(7)	118-120	60	$\nu_{\text {max. }} 1610 \mathrm{~cm}^{-1} ; \delta 2.7-3.0(2 \mathrm{H}, \mathrm{m}), 3.8-4.1(2 \mathrm{H}, \mathrm{m})$, and $7.1-8.3(8 \mathrm{H}, \mathrm{m}) ; M^{+} 257$
(8)	134-135	60	$\nu_{\text {max }} 2210$ and $1600 \mathrm{~cm}^{-1} ; M^{+} 292$
(9a)	142-143	68	
(9b)	118-119	65	$\nu_{\text {max }} .1620 \mathrm{~cm}^{-1} ; M^{+} 297$

cyclic analogue (42) of the cephalosporins exhibits good antibacterial activity.

(42)

EXPERIMENTAL

M.p.s were determined for samples in open capillary tubes with a Mel-Temp apparatus. I.r. spectra were obtained with a Perkin-Elmer Infracord spectrometer.
${ }^{8}$ Also see (a) J. N. Wells and O. R. Tarwater, J. Medicin. Chem., 1971, 14, 242; (b) R. F. Abdulla and K. H. Fuhr, ibid., 1975, 18, 625; (c) H. Vanderhaeghe and J. Thomis, ibid., 1975, 18, 486.
$3.76(6 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 5.08(1 \mathrm{H}, \mathrm{m})$, and $6.55-7.86$ ($9 \mathrm{H}, \mathrm{m}$) (Found: C, 66.3; H, 6.05; N, 4.12. $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{NO}_{5}$ requires $\mathrm{C}, 66.45 ; \mathrm{H}, 6.1 ; \mathrm{N}, 6.1 \%$).
(b) The hydroxy-ester (35) (4.6 g) was treated with dimethyl sulphate as under (a) to produce the methoxyester (36) ($3.5 \mathrm{~g}, 73 \%$), m.p. 98- 100°.

General Method for the Synthesis of 3,4-Dihydroiso-quinolines.-An illustrative example is given.

Methyl 3,4-dihydro-6,7-dimethoxy-1-phenylisoquinoline-3carboxylate (37). The benzamide (36) ($6.0 \mathrm{~g}, 0.0175 \mathrm{~mol}$), phosphoryl chloride ($6.7 \mathrm{~g}, 0.43 \mathrm{~mol}$), and phosphorus pentaoxide ($7.5 \mathrm{~g}, 0.052 \mathrm{~mol}$) were refluxed in xylene with stirring for 3 h , and after cooling to $25^{\circ} \mathrm{C}$ water was added. The organic phase was removed and the aqueous phase neutralized with sodium hydroxide (30%). The aqueous layer was extracted with chloroform ($3 \times 100 \mathrm{ml}$) and the

[^2]Table 3

Compd.(10)		$\begin{gathered} \text { Yield } \\ (\%) \\ 60 \end{gathered}$	Formula$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	Analysis (\%)*		
	M.p. $\left({ }^{\circ} \mathrm{C}\right)$			C	H	N
	130			$\begin{gathered} 74.8 \\ (75.0) \end{gathered}$	$\begin{aligned} & 5.3 \\ & (5.5) \end{aligned}$	$\begin{gathered} 9.4 \\ (9.2) \end{gathered}$
(11)	160	70	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\begin{aligned} & 66.25 \\ & (66.65) \end{aligned}$	$\begin{aligned} & 4.95 \\ & (4.95) \end{aligned}$	$\begin{gathered} 8.65 \\ (8.65) \end{gathered}$
(12)	97-98	65	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$			
(13)	88 -89	63	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$			
$\begin{aligned} & (14)^{4 c} \\ & (15) \end{aligned}$	$\begin{aligned} & 124-124 \\ & 195-196 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \\ & \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} \end{aligned}$			
(16)	190-192	80	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 73.4 \\ (73.45) \end{gathered}$	$\begin{gathered} 5.95 \\ (6.15) \end{gathered}$	$\begin{gathered} 9.4 \\ (9.5) \end{gathered}$
(17)	152-154	60	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	$\begin{aligned} & 77.6 \\ & (77.65) \end{aligned}$	$\begin{gathered} 6.55 \\ (6.5) \end{gathered}$	$\begin{aligned} & 10.1 \\ & (10.05) \end{aligned}$
${ }_{(18)}{ }^{4 b}$		60	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \\ & \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}^{2} \mathrm{O} \end{aligned}$			
(20)	168-169	75	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 78.4 \\ (78.25) \end{gathered}$	$\begin{gathered} 6.05 \\ (6.1) \end{gathered}$	$\begin{aligned} & 7.5 \\ & (7.05) \end{aligned}$
$\begin{aligned} & (21) \\ & (22) \end{aligned}$	$\begin{aligned} & 189-190 \\ & 187-189 \end{aligned}$	$\begin{aligned} & 72 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \\ & \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{array}{r} 75.55 \\ (75.7) \end{array}$	$\begin{gathered} 5.85 \\ (5.85) \end{gathered}$	
(23)	208-209	50	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{4}$			
(24)	172-173	75	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrNO}_{3}$	$\begin{gathered} 62.8 \\ (62.5) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.6) \end{gathered}$	$\begin{gathered} 3.1 \\ (2.9) \end{gathered}$
(25)	157-158	75	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\begin{aligned} & 73.5 \\ & (73.25) \end{aligned}$	$\begin{array}{r} 5.15 \\ (5.2) \end{array}$	$\begin{aligned} & 6.9 \\ & (6.55) \end{aligned}$
(26)	149-150	60	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{3}$	$\begin{gathered} 53.05 \\ (53.15) \end{gathered}$	$\begin{aligned} & 4.1 \\ & (3.95) \end{aligned}$	$\begin{aligned} & 12.9 \\ & (13.05) \end{aligned}$
(27)	139-140	63	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$			
(28)	142-143	55	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$			
(29)	115-120	80	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{3}$			
(30)	173-175	60	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$			
(31)	116-118	55	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$			
(32)	177-178	75	$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{4}$	$\begin{gathered} 62.25 \\ (62.4) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.4) \end{gathered}$
(33)	210-211	78	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\begin{aligned} & 71.0 \\ & (71.15) \end{aligned}$	$\begin{gathered} 6.15 \\ (5.95) \end{gathered}$	
(39)	152-153	45	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 61.7 \\ & (61.75) \end{aligned}$	$\begin{gathered} 5.05 \\ (4.95) \end{gathered}$	$\begin{gathered} 13.75 \\ (13.7) \end{gathered}$

$\nu_{\text {max. }} 1750$ and $2242 \mathrm{~cm}^{-1} ; \delta 2.62-2.8(2 \mathrm{H}, \mathrm{m}), 3.26$ ($3 \mathrm{H}, \mathrm{s}$), 35-3.75 ($2 \mathrm{H}, \mathrm{m}$), $4.75(1 \mathrm{H}, \mathrm{s})$, and $712-$ $7.66(8 \mathrm{H}, \mathrm{m})$
$\nu_{\operatorname{max.}} 1750 \mathrm{~cm}^{-1}$; $\delta 2.6-3.1(2 \mathrm{H}, \mathrm{m}), 3.3(3 \mathrm{H}, \mathrm{s})$, $3.6-3.9(2 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{s})$, and $7.35-8.35$ ($8 \mathrm{H}, \mathrm{m}$); $M^{+} 324$
$\nu_{\text {max. }} 1755$ and $2100 \mathrm{~cm}^{-1}$; $\delta 2.3(3 \mathrm{H}, \mathrm{s}), 2.45-2.8$ $(2 \mathrm{H}, \mathrm{m}), 3.5-3.8(2 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{s})$, and $7.0-7.5$ ($8 \mathrm{H}, \mathrm{m}$)
$\nu_{\max }{ }^{1} 760$ and $2100 \mathrm{~cm}^{-1} ; \delta 2.6-2.8(2 \mathrm{H}, \mathrm{m}), 3.6-3.8$ $(2 \mathrm{H}, \mathrm{m}), 3.8(3 \mathrm{H}, \mathrm{s}), 4.84(1 \mathrm{H}, \mathrm{s})$, and $6.8-7.6$ $(8 \mathrm{H}, \mathrm{m}), m / e 320\left(M^{+}\right) 294,237,206$, and 130
$\nu_{\text {max. }} 1745$ and $1692 \mathrm{~cm}^{-1} ; \delta 2.6-2.8(2 \mathrm{H}, \mathrm{m}), 3.25$ ($3 \mathrm{H}, \mathrm{s}$), $3.45-3.85(2 \mathrm{H}, \mathrm{m}), 4.88(1 \mathrm{H}, \mathrm{s}), 7.1-8.02$ ($8 \mathrm{H}, \mathrm{m}$), and $10.7 \mathrm{br}(1 \mathrm{H})$
$\nu_{\text {max. }} 1735$ and $3450 \mathrm{~cm}^{-1}$; $\delta 2.5-2.8(2 \mathrm{H}, \mathrm{m}), 3.13$ $(3 \mathrm{H}, \mathrm{s}), 3.4-3.8(4 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{s})$, and $6.4-7.5$ ($8 \mathrm{H}, \mathrm{m}$)
$\nu_{\text {max. }} 1735$ and $3350 \mathrm{~cm}^{-1}$; $\delta 2.3(3 \mathrm{H}, \mathrm{s}), 2.55-2.8$ ($2 \mathrm{HI}, \mathrm{m}$), $3.5-3.8(2 \mathrm{H}, \mathrm{m}), 4.5 \mathrm{br}(2 \mathrm{H}), 4.9(1 \mathrm{H}, \mathrm{s}$) and $7.0-7.5(8 \mathrm{H}, \mathrm{m}) ; M^{+} 278$
$\nu_{\text {max }} 1740$ and $3320 \mathrm{~cm}^{-1}$
$\nu_{\text {max. }} 1730$ and $1665 \mathrm{~cm}^{-1}$; $\delta 2.4(3 \mathrm{H}, \mathrm{s}), 2.65-2.85$ ($2 \mathrm{H}, \mathrm{m}$), $3.35(2 \mathrm{H}, \mathrm{s}), 3.5-3.8(2 \mathrm{H}, \mathrm{m}), 5.5(1 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 6.8-7.5(13 \mathrm{H}, \mathrm{m})$, and $8.1(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$
$\nu_{\text {max }} 1705$ and $1750 \mathrm{~cm}^{-1} ; m / e 293,237$, and 165
$\nu_{\text {max. }} 1750$ and $1710 \mathrm{~cm}^{-1} ; \delta 2.54-2.82(2 \mathrm{H}, \mathrm{m})$, $3.6-3.82(2 \mathrm{H}, \mathrm{m}), 5.32(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 5.7(1 \mathrm{H}, \mathrm{s})$, and 7.13-8.12 ($10 \mathrm{H}, \mathrm{m}$)
$\nu_{\text {max. }} 1750 \mathrm{~cm}^{-1}$; $\delta 2.5-2.86(2 \mathrm{H}, \mathrm{m}), 3.45-3.7(2 \mathrm{H}$, $\mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{s})$, and $6.7-7.6(6 \mathrm{H}, \mathrm{m})$; $M^{+} 419 / 417$
$\nu_{\text {max. }} 1750 \mathrm{~cm}^{-1} ; \delta 2.6-2.83(2 \mathrm{H}, \mathrm{m}), 3.52-3.82$ $(2 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s}), 5.5(1 \mathrm{H}, \mathrm{s})$, and $6.8-7.6(11 \mathrm{H}, \mathrm{m}) ; M^{+} 481 / 479$
$\nu_{\text {max. }} 1765$ and $2120 \mathrm{~cm}^{-1} ; \delta 2.54-2.83(2 \mathrm{H}, \mathrm{m})$, $3.55-3.8(2 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s}), 4.56$ $(1 \mathrm{H}, \mathrm{s})$, and $6.85-7.6(11 \mathrm{H}, \mathrm{m}) ; \quad m / e 426\left(M^{+}\right) 334$ and 293
$\nu_{\text {max. }} 1795$ and $2100 \mathrm{~cm}^{-1} ; \delta 2.75(2 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{m})$, $3.90(3 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{s})$, $6.58(1 \mathrm{H}, \mathrm{s})$, and $7.70-7.18(4 \mathrm{H}, \mathrm{m})$; $m / e 346,295$, 245, 181, and 134
$\nu_{\text {max. }} 1780$ and $2125 \mathrm{~cm}^{-1}$; $\delta 2.57-2.85(2 \mathrm{H}, \mathrm{m})$, $3.57-3.87(2 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 4.93$ $(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{s}), 7.0(1 \mathrm{H}, \mathrm{s})$, and $7.63(4 \mathrm{H}, \mathrm{q}$, $J 7 \mathrm{~Hz}) ; m / e$ 347, 292, and 245
$\nu_{\text {max. }} 1700$ and $2100 \mathrm{~cm}^{-1} ; \delta 2.68-2.93(2 \mathrm{H}, \mathrm{m})$, $3.6-3.78(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.02$ $(3 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{s})$, and $6.8-7.6(6 \mathrm{H}, \mathrm{m}) ; m / e$ 352, 294, 282, and 266
$\nu_{\text {max. }} 1745$ and $3340 \mathrm{~cm}^{-1}$; $\delta 2.25 \mathrm{br}(2 \mathrm{H}), 2.6-3.07$ $(2 \mathrm{H}, \mathrm{m}), 3.48-3.75(2 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.92$ $(3 \mathrm{H}, \mathrm{s}), 4.03(1 \mathrm{H}, \mathrm{s})$, and $6.65-7.6(6 \mathrm{H}, \mathrm{m}), m / e 345$, 207, and 164
$\nu_{\text {max. }} 1740$ and $2210 \mathrm{~cm}^{-1}$; $\delta 2.27-2.82(2 \mathrm{H}, \mathrm{m}), 3.4 \mathrm{br}$ $(2 \mathrm{H}), 3.52-3.8(2 \mathrm{H}, \mathrm{m}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s})$, $5.5(1 \mathrm{H}, \mathrm{s}), 7.0(1 \mathrm{H}, \mathrm{s}), 7.2(1 \mathrm{H}, \mathrm{s})$, and $7.52(4 \mathrm{H}, \mathrm{q}$, $J 8 \mathrm{~Hz}$) ; $m / e 349,292,277,262$, and 247
$\nu_{\text {max. }} 1760$ and $3330 \mathrm{~cm}^{-1}$; $\delta 1.5-1.8 \mathrm{br}(2 \mathrm{H}), 2.5-2.85$ ($2 \mathrm{H}, \mathrm{m}$), $3.5-3.8(2 \mathrm{H}, \mathrm{m}), 3.8(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s})$, $3.95(3 \mathrm{H}, \mathrm{s}), 4.45(1 \mathrm{H}, \mathrm{s})$, and $6.65-7.35(6 \mathrm{H}, \mathrm{m})$; $M^{+} 354$
$\nu_{\text {max }} 1785$ and $1655 \mathrm{~cm}^{-1}$; $\delta 2.68(2 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}, \mathrm{m})$, $3.62(2 \mathrm{H}, \mathrm{m}), 3.99(3 \mathrm{H}, \mathrm{s}), 4.08(3 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}, \mathrm{d}$, $J 8 \mathrm{~Hz}), 6.8-7.6(11 \mathrm{H}, \mathrm{m})$, and $8.1(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz})$
$\nu_{\text {max. }} 1740$ and $1689 \mathrm{~cm}^{-1} ; \delta 2.52-2.8(2 \mathrm{H}, \mathrm{m}), 3.38$ $(2 \mathrm{H}, \mathrm{s}), 3.52-3.81(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.86$ $(3 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 5.4(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz})$, and 6.7 $7.38(11 \mathrm{H}, \mathrm{m}) ; m / e 291,275$, and 237
$\nu_{\max } 1780$ and $2200 \mathrm{~cm}^{-1} ; \delta 2.09(2 \mathrm{H}, \mathrm{m}), 3.88(6 \mathrm{H}, \mathrm{s})$, $4.0(3 \mathrm{H}, \mathrm{s}), 4.4(1 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{s})$, $7.04(\mathrm{l} \mathrm{H}, \mathrm{s})$, and $7.2-7.8(5 \mathrm{H}, \mathrm{m}) ; M^{+} 408$

* Required values in parentheses.
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford the isoquinoline (37) ($2 \mathrm{~g}, 34 \%$), m.p. $119-120^{\circ}$; $\nu_{\text {max. }}$ (Nujol) 1705 (ester CO) and $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; $\delta\left(\mathrm{CDCl}_{3}\right) 3.04(2 \mathrm{H}$, d, $J 10 \mathrm{~Hz}), \dagger 3.72(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s}), 4.41$ $(1 \mathrm{H}, \mathrm{t}, J 10 \mathrm{~Hz}), * 6.82(2 \mathrm{H}, \mathrm{s})$, and $7.2-7.3(5 \mathrm{H}, \mathrm{m})$; $M^{+} 325$ (Found: $\mathrm{C}, 70.3 ; \mathrm{H}, 6.0 ; \mathrm{N}, 4.3 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{C}, 70.15 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.1 \%$).

The cyclic imines (3)-(9) were similarly obtained from the corresponding N-acetylated β-arylethylamines (Table 2).

General Method for the Synthesis of β-Lactams.-An illustrative example is given.

Methyl 1,4,5,9b-tetrahydro-7,8-dimethoxy-2-oxo-1-phenoxy-9a-phenyl-2H-azeto[2,1-a]isoquinoline-4-carboxylate (38). Phenoxyacetyl chloride ($3.1 \mathrm{~g}, 0.0185 \mathrm{~mol}$) in dry dichloromethane (100 ml) was added dropwise to a stirred solution of the dihydroisoquinoline (37) ($6.0 \mathrm{~g}, 0.0185 \mathrm{~mol}$) and triethylamine ($2.0 \mathrm{~g}, 0.0185 \mathrm{~mol}$) in dichloromethane (300 ml) under nitrogen. After stirring overnight at room temperature the product was poured into ice-water. The organic phase was separated, washed with water (3×100), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to leave the β-lactam (38) ($2.54 \mathrm{~g}, 60 \%$), m.p. $204-205^{\circ}$; $\nu_{\text {max }}$ (Nujol) 1765 ($\beta-$ lactam CO) and $1740 \mathrm{~cm}^{-1}$ (ester CO); $\delta\left(\mathrm{CDCl}_{3}\right) 2.4-3.22$ $(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.9(6 \mathrm{H}, \mathrm{s}), 4.5(1 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz})$, $5.6(1 \mathrm{H}, \mathrm{s})$, and $6.8-7.01(12 \mathrm{H}, \mathrm{m})$; $M^{+} 459$ (Found: C, $70.9 ; \mathrm{H}, 5.55 ; \mathrm{N}, 3.2 . \quad \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{6}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}$, 5.5 ; N, 3.05\%).

The β-lactams (10)-(15), (23)-(28), and (39) were prepared similarly (see Table 3).

Methyl 1-Amino-1,4,5,9b-tetrahydro-7,8-dimethoxy-2-oxo-9-phenyl-2H-azeto[2,1-a]isoquinoline-4-carboxylate (40).Small pieces of aluminium amalgam [from aluminium foil (5.0 g) and mercury(II) chloride ($6 \times 2 \mathrm{~g}$) dissolved in water (600 ml)] were added to a stirred solution of the azido- β-lactam (39) ($2.0 \mathrm{~g}, 0.005 \mathrm{~mol}$) in tetrahydrofuran $(100 \mathrm{ml})$, methanol (90 ml), and water (10 ml). After stirring for 4 h , the product was filtered and the residue washed with dichloromethane. The combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to leave the amino- β-lactam (40) ($1.4 \mathrm{~g}, 75 \%$), m.p.

180-182 ${ }^{\circ}$; $\nu_{\text {max }}($ Nujol $) 3400\left(\mathrm{NH}_{2}\right), 1755$ (β-lactam CO), and $1735 \mathrm{~cm}^{-1}$ (ester CO); $M^{+} 382$.

The amino β-lactams (17)-(20), (30), and (31) were also obtained by reduction of the corresponding azido-compounds (Table 3).

Methyl 1,4,5,9b-Tetrahydro-7,8-dimethoxy-2-oxo-9a-phenyl-1-phenylacetamido-2H-azeto[2,1-a]isoquinoline-4-carboxylate
(41).-Phenylacetyl chloride ($0.4057 \mathrm{~g}, 0.00262 \mathrm{~mol}$) in dry dichloromethane (50 ml) was added dropwise to a stirred solution of the amino- β-lactam (40) (1 g, 0.00262 mol) and triethylamine ($0.29 \mathrm{~g}, 0.00262 \mathrm{~mol}$) in dichloromethane $(200 \mathrm{ml})$. The mixture was stirred overnight, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to leave the amido- β-lactam (41), which was crystallized from n-hexane-methylene chloride; yield 0.9 g (70%), m.p. $188-190^{\circ}$; $\nu_{\text {max }}$ (Nujol) 3325 (amide NH), 1745 (β lactam CO), 1735 (ester CO), and $1678 \mathrm{~cm}^{-1}$ (amide CO); $\delta\left(\mathrm{CDCl}_{3}\right) 2.0-3.18(2 \mathrm{H}, \mathrm{m}), 3.32(2 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s})$, $3.86(3 \mathrm{H}, \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 5.5(1 \mathrm{H}, \mathrm{d})$, $6.1(1 \mathrm{H}, \mathrm{d})$, and $6.55-7.87$ ($12 \mathrm{H}, \mathrm{m}$) (Found: $\mathrm{N}, 6.05$. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{N}, 5.6 \%$).

Compounds (20)-(22), (32), and (33) were obtained similarly (Table 3).

9a-($\mathrm{p}-$ Aminophenyl)-1,4,5,9b-tetrahydro-1-methoxy-2H-azeto[2,1-a]isoquinolin-2-one (16).-Platinum oxide (0.4 g) was added to a solution of the nitro- β-lactam (11) (3 g) in ethyl acetate, and the mixture was hydrogenated at 40 $\mathrm{lb} \mathrm{in}^{-2}$ overnight. Filtration and evaporation gave the amino- β-lactam (16), m.p. 190-192 ${ }^{\circ}$ (from dichloro-methane-n-hexane).

We thank Gist-Brocades N.V., The Netherlands, and Stevens Institute of Technology for support of this research. Biological testing was performed at the GistBrocades N.V. Laboratories.
[6/512 Received, 15th March, 1976]

* The 3 protons of the dihydropyridine ring of (37) gave a deceptively simple ABX type pattern; J actually represents $\frac{1}{2}\left(J_{A X}+J_{B X}\right)$.

[^0]: ${ }^{1}$ Part 44, A. K. Bose and M. S. Manhas, J. Heterocyclic Chem., 1976, 18, S43.
 ${ }^{2}$ A. K. Bose, J. C. Kapur, S. D. Sharma, S. G. Amin, and M. S. Manhas, J. Medicin. Chem., 1974, 17, 541 ; see also J. N. Wells and O. R. Tarwater, ibid., 1971, 14, 242.

[^1]: ${ }^{5}$ A. K. Bose, S. D. Sharma, J. C. Kapur, and M. S. Manhas, Synthesis, 1973, 216.

[^2]: ${ }^{9}$ R. N. Guthikonda, L. D. Cama, and B. G. Christensen, J. Amer. Chem. Soc., 1974, 96, 7584.
 ${ }_{10}$ A. Bertho and J. Maier, Annalen, 1932, 498, 52.

